×
Home Current Archive Editorial board
News Contact
Review paper

Secretome of hypoxia-preconditioned mesenchymal stem cells enhance the expression of HIF-1a and bFGF in a rotator cuff tear model

By
Meiky Fredianto Orcid logo ,
Meiky Fredianto
Contact Meiky Fredianto

Orthopaedic and Traumatology Division, Surgery Department, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia

Doctoral Programme of Medical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia

Herry Herman ,
Herry Herman

Doctoral Programme of Medical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia

Yoyos Dias Ismiarto ,
Yoyos Dias Ismiarto

Orthopaedics and Traumatology Department, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia

Agung Putra ,
Agung Putra

Stem Cell and Cancer Research, Universitas Islam Sultan Agung, Semarang, Indonesia

Department of Postgraduate Biomedical Science, Universitas Islam Sultan Agung, Indonesia

Department of Pathological Anatomy, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia

Iffan Alif ,
Iffan Alif

Stem Cell and Cancer Research,

Nur Dina Amalina ,
Nur Dina Amalina

Stem Cell and Cancer Research,

Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Univesitas Negeri Semarang, Semarang, Indonesia

Muhammad Ariq Nazar
Muhammad Ariq Nazar

Stem Cell and Cancer Research,

Abstract

Aim
To determine the effect of secretome hypoxia mesenchymal stem cells (SH-MSCs) on the relative gene expression of hypoxia inducible factor-1a (HIF-1a) and basic fibroblast growth factor (bFGF) in accelerating histomorphometric repair of tendon to bone interface healing in rats acute rotator cuff tear (RCT) model.
Methods
This is experimental research with posttest control group design. Thirty-male Wistar rats were divided into five treatment
groups: healthy group and rotator cuff reconstruction group included four groups: SH-MSCs W2 (the treatment group was given a SH-MSCs 0.5 mL and terminated at weeks 2), NaCl W2 (the control vehicle group was assigned NaCl 0.5 mL and terminated at weeks 2), SH-MSCs W8 (the treatment group was given a SHMSCs 0.5 mL and terminated at weeks 8), and NaCl W8 (the control vehicle group was given NaCl 0.5 mL and terminated at weeks 8). All the rats were terminated on day termination and HIF-1a and bFGF gene expression were analysed using qRT-PCR.
Results
SH-MSCs significantly increased the HIF-1a and bFGF gene expression than the NaCl group even in week 2 and week 8.
The highest increased gene expression of HIF-1a and bFGF was on week 8.
Conclusion
SH-MSCs are important in the healing repair process of the tendon-to-bone interface in acute RCT model rats through
increasing gene expression of HIF-1α and bFGF.

References

1.
Sambandam S, Khanna V, Gul A, Mounasamy V. Rotator cuff tears: an evidence based approach. World J Orthoped. 2015. p. 902–18.
2.
Karjalainen T, Jain N, Heikkinen J, Johnston R, Page C, Buchbinder R. Surgery for rotator cuff tears. Cochrane Database Syst Rev. 2019.
3.
Yang G, Rothrauff B, Tuan R. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res. 2013. p. 203–22.
4.
Abdelwahab A, Ahuja N, Iyengar K, Jain V, Bakti N, Singh B. Traumatic rotator cuff tears -current concepts in diagnosis and management. J Clin Orthro Trauma. 2021. p. 51–5.
5.
Zhuang Y, Zhao Z, Cheng M, Li M, Si J, Lin K, et al. HIF-1α Regulates osteogenesis of periosteum-derived stem cells under hypoxia conditions via modulating POSTN Expression. Front Cell Dev Biol. 2022.
6.
Xu Y, Zhang W, Wang L, Ming Y, Li Y, Ni G. Stem cell therapies in tendon-bone healing. World J Stem Cells. 2021. p. 753–75.
7.
Lu J, Jiang L, Chen Y, Lyu K, Zhu B, Li Y, et al. the functions and mechanisms of basic fibroblast growth factor in tendon repair. Front Phys. 2022. p. 852795.
8.
Ground M, Waqanivavalagi S, Park Y, Callon K, Walker R, Milsom P, et al. Fibroblast growth factor 2 inhibits myofibroblastic activation of valvular interstitial cells. PLoS One. 2022. p. 17-e270227.
9.
Yea J, Park J, Kim I, Sym G, Bae T, Jo C. Regeneration of a full-thickness defect of rotator cuff tendon with freshly thawed umbilical cord-derived mesenchymal stem cells in a rat model. Stem Cell Res Ther. 2020. p. 1–3.
10.
Kim D, Cho G, Han C, Park D, Park H, Woo D, et al. Current understanding of stem cell and secretome therapies in liver diseases. Tissue Eng Reg Med. 2017. p. 653–65.
11.
Robert A, Gomes A, Rode F, M, Da Silva M, Veleirinho M, et al. The skin regeneration potential of a pro-angiogenic secretome from human skin-derived multipotent stromal cells. J Tissue Eng. 2019. p. 2041731419833391.
12.
Sunarto H, Trisnadi S, Putra A, Sa’dyah, Nac, Tjipta A, et al. The role of hypoxic mesenchymal stem cells conditioned medium in increasing vascular endothelial growth factors (VEGF) levels and collagen synthesis to accelerate wound healing. Indonesian J Can Chemoprev. 2020. p. 134.
13.
Hamra N, Putra A, Tjipta A, Amalina N, Nasihun T. Hypoxia mesenchymal stem cells accelerate wound closure improvement by controlling α-smooth muscle actin expression in the full-thickness animal model. Open Access Maced J Med Sci. 2021. p. 35–41.
14.
Yustianingsih V, Sumarawati T, Putra A. Hypoxia enhances self-renewal properties and markers of mesenchymal stem cells. Universa Medica. 2019. p. 164–71.
15.
Putra A, Ridwan F, Putridewi A, Kustiyah A, Wirastuti K, Sadyah N, et al. The role of tnf-α induced mscs on suppressive inflammation by increasing tgf-β and il-10. Open Access Maced J Med Sci. 2018. p. 1779–83.
16.
Putra A, Alif I, Nazar M, Prasetio A, Chandra R, Irawan S, et al. IL-6 and IL-8 suppression by bacteria-adhered mesenchymal stem cells co-cultured with PBMCs under TNF-α exposure. In Scitepress. 2021. p. 311–7.
17.
Restimulia L, Ilyas S, Munir D, Putra A, Madiadipoera T, Farhat F, et al. Amalina ND, Alif I. The CD4+CD25+FoxP3+ regulatory T cells regulated by MSCs suppress plasma cells in a mouse model of allergic rhinitis 256 the CD4+CD25+FoxP3+ regulatory T cells regulated by MSCs Suppress plasma cells in a mouse model of allergic rhinitis. Med Arch. 2021. p. 256.
18.
Restimulia L, Ilyas S, Munir D, Madiadipoera T, Farhat F, Sembiring R, et al. Rats’ umbilical-cord mesenchymal stem cells ameliorate mast cells and Hsp70 on ovalbumin-induced allergic rhinitis rats. Med Glas (Zenica). 2022. p. 52–9.
19.
Darlan D, Munir D, Putra A, Alif I, Amalina N, Jusuf N, et al. Revealing the decrease of indoleamine 2,3-dioxygenase as a major constituent for B cells survival post-mesenchymal stem cells co-cultured with peripheral blood mononuclear cell (PBMC) of systemic lupus erythematosus (SLE) patients. Med Glas (Zenica). 2022. p. 12–8.
20.
Prajoko Y, Putra A, Dirja B, Muhar A, Amalina N. The Ameliorating effects of MSCs in controlling Treg-mediated B-Cell depletion by Indoleamine 2, 3-dioxygenase Induction in PBMC of SLE patients. Open Access Maced J Med Sci. 2022. p. 6–11.
21.
Hartanto M, Prajoko Y, Putra A, Amalina N. The Combination of mesenchymal stem cells and bovine colostrum in reducing α-SMA expression and NLR Levels in Wistar rats after 50% fibrotic liver resection. Open Access Maced J Med Sci. 2022. p. 1634–9.
22.
Drawina P, Putra A, Nasihun T, Prajoko Y, Dirja B, Amalina N. Increased serial levels of plateletderived growth factor using hypoxic mesenchymal stem cell-conditioned medium to promote closure acceler-ation in a full-thickness wound. Indones J Biotechnol. 2022. p. 36.
23.
Zukhiroh Z, Putra A, Chodidjah C, Sumarawati T, Subchan P, Trisnadi S, et al. Effect of secretome-hypoxia mesenchymal stem cells on regulating SOD and MMP-1 mRNA expressions in skin hyperpigmentation rats. Open Access Maced J Med Sci. 2022. p. 1–7.
24.
Tjipta A, Hermansyah D, Suzery M, Cahyono B, Amalina N. Application of bioinformatics analysis to identify important pathways and hub genes in breast cancer affected by HER-2. Inter J Cell Biomed Sci. 2022. p. 18–27.
25.
Lin W, Xu L, Zwingenberger S, Gibon E, Goodman S, Li G. Mesenchymal stem cells homing to improve bone healing. J Orthopaedic Trans. 2017. p. 19–27.
26.
Bonetti M, Rovere G, Fulchignoni C, Santis D, Ziranu V, Maccauro A, et al. Autologous fat transplantation for the treatment of trapeziometacarpal join osteoarthritis. Orthop Rev (Pavia). 2020. p. 58–60.
27.
Rollo G, Bonura E, Falzarano G, Bisaccia M, Iborra J, Grubor P, et al. Platet rich plasma or hyperbaric oxygen therapy as callus accellerator in aseptic tibial non union. Evaluate of outcomes. Acta Biomed. 2020. p. 1–11.
28.
Natali S, Screpis D, Romeo M, Magnanelli S, Rovere G, Camarda A, et al. Is intra-articular injection of autologous micro-fragmented adipose tissue effective in hip osteoarthritis? A three year follow-up. Int Orthop. 2022. p. 1–6.
29.
Schell H, Duda G, Peters A, Tsitsilonis S, Johnson K, Schmidt-Bleek K. The haematoma and its role in bone healing. J Exp Orthop. 2017. p. 5.
30.
Razban V, Lotfi A, Soleimani M, Ahmadi H, Massumi M, Khajeh S, et al. HIF-1α overexpression induces angiogenesis in mesenchymal stem cells. Biores Open Access. 2012. p. 174–83.
31.
Qin Q, Liu Y, Yang Z, Aimaijiang M, Ma R, Yang Y, et al. Hypoxia-Inducible Factors Signaling in Osteogenesis and Skeletal Repair. Inter J Mol Sci. 2022. p. 11201.
32.
Chen L, Xu Y, Zhao J, Zhang Z, Yang R, Xie J, et al. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One. 2014. p. 96161.
33.
Beegle J, Lakatos K, Kalomoiris S, Stewart H, Isseroff R, Nolta J, et al. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells. 2015. p. 1818–28.
34.
Liu W, Li L, Rong Y, Qian D, Chen J, Zhou Z, et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 2020. p. 196–212.
35.
Nakanishi K, Sato Y, Mizutani Y, Ito M, Hirakawa A, Higashi Y. Rat umbilical cord blood cells attenuate hypoxic-ischemic brain injury in neonatal rats. Sci Rep. 2017. p. 44111.
36.
Liu S, Xu X, Liang S, Chen Z, Zhang Y, Qian A, et al. The Application of MSCs-derived extracellular vesicles in bone disorders: novel cell-free therapeutic strategy. Frontiers Cell Developl Biol. 2020. p. 619.
37.
Zhang Q, Bai X, Ma C, Hu T, Liang Q, Xie C, et al. Wnt/β-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1α signaling. Carcinogenesis. 2013. p. 962–73.
38.
Najafbeygi A, Fatemi J, M, Lebaschi H, A, Mousavi J, et al. Effect of basic fibroblast growth factor on Achilles tendon healing in rabbit. World J Plas Sur. 2017. p. 26.
39.
Jin S, Yang C, Huang J, Liu L, Zhang Y, Li S, et al. Conditioned medium derived from FGF-2-modified GMSCs enhances migration and angiogenesis of human umbilical vein endothelial cells. Stem Cell Res Ther. 2020. p. 1–12.
40.
Tang J, Wu Y, Cao Y, Chen C, Zhou Y, Avanessian B, et al. Basic FGF or VEGF gene therapy corrects insufficiency in the intrinsic healing capacity of tendons. Sci Rep. 2016. p. 20643.
41.
Majewski M, Heisterbach P, Jaquiéry C, Dürselen L, Todorov A, Martin I, et al. Improved tendon healing using bFGF, BMP-12 and TGFβ1 in a rat model. Eur Cell Mater. 2018. p. 318–34.
42.
Schwarz R. Collagen I and the fibroblast: High protein expression requires a new paradigm of post-transcriptional, feedback regulation. Biochem Biophys Rep. 2015. p. 38–44.
43.
Darby I, Laverdet B, Bonté F, Desmoulière A. Fibroblasts and myofibroblasts in wound healing. Cosm Inves Dermal. 2014. p. 301–11.
44.
Shi J, Li J, Guan H, Cai W, Bai X, Fang X, et al. Anti-fibrotic actions of interleukin-10 against hypertrophic scarring by activation of PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts. PLoS One. 2014. p. 298228.
45.
Luo Y, Ren Z, Du B, Xing S, Huang S, Li Y, et al. Structure identification of Vicenin IIeExtracted from Dendrobium officinale and the reversal of TGF-β1-induced epithelial-mesenchymal transition in lung adenocarcinoma cells through TGF-β/Smad and PI3K/Akt/mTOR signaling pathways. molecules. 2019. p. 144.
46.
Samakova A, Gazova A, Sabova N, Valaskova S, Jurikova M, Kyselovic J. The pi3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol Res. 2019. p. 131–8.

Citation

Authors retain copyright. This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.