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ABSTRACT

Aim To determine the effect of secretome hypoxia mesenchymal 
stem cells (SH-MSCs) on the relative gene expression of hypoxia 
inducible factor-1a (HIF-1a) and basic fibroblast growth factor 
(bFGF) in accelerating histomorphometric repair of tendon to 
bone interface healing in rats acute rotator cuff tear (RCT) model.

Methods This is experimental research with posttest control group 
design. Thirty-male Wistar rats were divided into five treatment 
groups: healthy group and rotator cuff reconstruction group inclu-
ded four groups: SH-MSCs W2 (the treatment group was given 
a SH-MSCs 0.5 mL and terminated at weeks 2), NaCl W2 (the 
control vehicle group was assigned NaCl 0.5 mL and terminated 
at weeks 2), SH-MSCs W8 (the treatment group was given a SH-
MSCs 0.5 mL and terminated at weeks 8), and NaCl W8 (the con-
trol vehicle group was given NaCl 0.5 mL and terminated at weeks 
8). All the rats were terminated on day termination and HIF-1a and 
bFGF gene expression were analysed using qRT-PCR. 

Results SH-MSCs significantly increased the HIF-1a and bFGF 
gene expression than the NaCl group even in week 2 and week 8. 
The highest increased gene expression of HIF-1a and bFGF was 
on week 8. 

Conclusion SH-MSCs are important in the healing repair process 
of the tendon-to-bone interface in acute RCT model rats through 
increasing gene expression of HIF-1α and bFGF.
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INTRODUCTION 

Rotator cuff tear (RCT) is a massive tendon injury 
mainly caused by traumatic injury and chronic 
tendon degeneration (1). Over 250,000 RCT repa-
irs are performed per year, however repair failure 
affects >20% of patients (2). The failure rate incre-
ases up to 70 - 90% with chronic and large tears 
(3). A key reason for the high failure rate is the 
lack of healing at the repaired tendon-bone interfa-
ce. In particular, robust repair requires functional 
reformation of the tendon-bone interface (4). In 
addition, the damaged tissue allows for a hypoxic 
niche in RCT characterised by the expression of 
hypoxia-inducible factor-1a (HIF-1a) thus prolon-
ging the tendon reformation process (5). Recently, 
accelerated tendon reformation also requires va-
rious growth factors such as fibroblast growth 
factor-2 (FGF-2), transforming growth factor beta 
1 (TGF-b1), and basic fibroblast growth factor 
(bFGF). Using growth factor to promote regene-
ration of the tendon, fibrocartilage, and bone at 
the tendon-bone interface is an emerging strategy 
in translational studies. The bFGF stimulates te-
nocytes resulting in increased collagen production 
and proliferation found in vitro. Previous studies 
reported that secretome from hypoxia-preconditi-
oned mesenchymal stem cells (SH-MSCs) provi-
de several growth factors that can promote tendon 
regeneration (8). 
Mesenchymal stem cells (MSCs) have emerged 
as a promising candidate for essential tissue re-
generation of rotator cuff tendon-bone healing 
(6). Bone marrow-derived MSCs (BM-MSCs) 
and adipose tissue-derived MSCs (AD-MSCs) 
improve collagen organization and collagen fi-
bre coherence and enhance the tensile strength 
of tendons in a rat model of rotator cuff injury 
(7). A previous study reported that umbilical cord 
mesenchymal stem cells (UC-MSCs) can be used 
to recover tissue structure in a mouse model of 
ischemic injury and a C57BL6 mouse model of 
wound injury (8). However, using these MSCs 
entails invasive harvesting techniques, low 
collection efficiency, decreased ability with age, 
and short cell life span of MSCs. The secretome 
of MSCs can act as paracrine autocrine regula-
tors to conduct intercellular information transmi-
ssion and thereby regulate the immune response 
and tissue metabolism (9). Secretome secreted 
by MSCs play an important role in intercellular 

signal transduction and exosomes can regulate 
the tissue microenvironment and promote tissue 
repair and reconstruction (10,11). 
Currently, there need for more research on the 
mechanism of exosomes in the process of ten-
don-bone healing. The diverse functions of secre-
tome suggest that SH-MSCs may be involved in 
the regulation of tendon-bone healing. However, 
the effect of SH-MSCs on the Hif-1a and bFGF 
to promote tendon-bone healing after RCT is still 
unclear. 
The aim of this study was to investigate effects 
of SH-MSCs on the relative gene expression of 
HIF-a and bFGF in accelerating histomorphome-
tric repair of tendon-to-bone interface healing in 
rats acute RCT model.

MATERIALS AND METHODS

Materials and study design

This study was conducted in the Stem Cell and 
Cancer Laboratory Indonesia, from August 2022 
until February 2023. 
All the experimental procedures were performed 
with the approval of the Committee of Bioethics 
Universitas Padjajaran and Hasan Sadikin Hospi-
tal, Indonesia under the number 960/UN6.KEP/
EC/2021 followed the Institutional Animal Care 
and Use Committee guidelines..
Animal experiment in vivo. Thirty male Wistar 
rats (8-week-old Wistar rats, male, 200-250 g) 
were used for in vivo experiment and divided 
into five groups, (1) healthy groups and rotator 
cuff reconstruction model included four groups: 
SH-MSCs W2 (the treatment group was given a 
SH-MSCs 0.5 mL and terminated at weeks 2), 
NaCl W2 (the control vehicle group was given 
NaCl 0.5 mL and terminated at weeks 2), SH-
MSCs W8 (the treatment group was given a SH-
MSCs 0.5 mL and terminated at week 8), and  
NaCl W8 (the control vehicle group was given 
NaCl 0.5 mL and terminated at week 8). Each 
group included 6 rats. 
In the treatment group (SH-MSCs W2 and SH-
MSCs W8), 0.5 mL of SH-MSCs was injected 
into the bony groove of the greater tuberosity in 
the rotator cuff repair area locally above the repa-
ir lesion during surgery before the skin was clo-
sed. While in the control vehicle group (NaCl W2 
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and W8), 0.5 mL of NaCl was given in the same 
procedure as treatment group. The surgical wo-
und was then closed layer by layer according to 
the standard procedure of surgery with 4-0 nylon 
sutures. After the surgery, all animals were freed 
to move in the cage without immobilization and 
were checked daily for signs of general condition, 
including, normal activity, care, hydration status 
and nutritional status. Animals were housed in 
pairs and with free access to drinking water and 
food. The rats were sacrificed immediately 2 and 
8 weeks after the surgery. 
The rats were anesthetized with a lethal cocktail 
dose of Ketamine 50 mg/kgBW, Xylazine 10 mg/
kgBW, and Acepromazine 2 mg/kgBW, which 
were injected intramuscularly and the supraspi-
natus and infraspinatus muscle-tendon units to-
gether with approximately 1.5 cm of the proximal 
humerus were sacrificed for molecular analysis.

Methods 

MSCs isolation and culture. MSCs were derived 
from the female rats-umbilical cord at 19 days 
of pregnancy then were isolated and cultured as 
described previously (12–14). Briefly, the MSCs 
cells were cultured in the DMEM-low glucose me-
dium (Gibco, USA) containing 10% foetal bovine 
serum (FBS, Gibco, USA), and 1% double anti-
biotics streptomycin and penicillin (Gibco, USA). 
The cells were maintained at 37 °C in a humidified 
atmosphere of 5% CO2 and 95% air. 
MSCs characterization. The MSC surface mark-
ers were determined as described previously (15). 
Briefly, the cells at the 4th passage were detached 
and stained with anti-rat monoclonal antibodies 
including APC-conjugated CD73, FITC-conju-
gated CD90, PerCP-conjugated CD105, and PE-
conjugated hemopoietic stem cell lineage Lin for 
30 min at 4 °C. The labelled cells were analysed 
using flow cytometry (BD Accuri C6 PLUS; BD 
Biosciences, San Jose, CA, USA). The MSCs 
differentiation capacity was determined using 
osteogenic  and adipogenic differentiation assay. 
Briefly, the cells were plated on 4×104 cells in 3.5 
cm culture dishes under an osteogenic medium 
composed of DMEM High Glucose supplemented 
with 10% FBS, 1% Penstrep, 1 x 10-2 M sodium 
β-glycerophosphate, 1 x 10-4 M dexamethasone, 
and 5 x 10-5 M ascorbic acid. The medium was 
replaced every three days for 15 days. The cal-

cium deposition showed a bright red colour after 
Alizarin Red staining Zigma (16–20). Adipogenic 
differentiation assay was analysed under Oil Red 
O staining assay. Briefly, adipogenesis was carried 
out in an adipogenic induction medium containing 
ADS medium supplemented with 0.5 mM isobu-
tyl methylxanthine, 1µM dexamethasone, and 200 
µMi ndomethacin. Experiments were performed 
at 15 and 28 days. Adipogenic differentiation was 
confirmed by oil-red-O staining.
HS-MSCs isolation. MSCs were ready to pre-
condition using hypoxic chamber (Anaerobic 
Environment; ThermoForma, Waltham, MA, 
USA) when it reached 70% confluency in flask 
containing complete medium, then they were 
washed twice with PBS and incubated in DMEM 
for 24 h. MSCs were cultured in mix gas mixtu-
re composed of 5% CO2, 10% H2, and 85% N2 
then maintained at 37°C. The oxygen level in the 
chamber was ~0.5%. After the incubation, SH-
MSCs were collected by filtering the medium of 
MSCs using Tangential Flow Filtration (Formu-
latrix, USA) (21–23). 
HIF-1a and bFGF gene expression analysis. 
Tissues of the supraspinatus and infraspinatus 
tendons attached to the major tubercle of the hu-
merus bone's major tubercle were analyzed the 
quantitative real-time polymerase chain reaction 
(qRT-PCR) method. Total tissue RNA from tissues 
was extracted using TRIzol reagent (Invitrogen, 
Shanghai, China) according to the manufacturer's 
protocol. Briefly, first-stranded cDNA was synthe-
sized with 1 ng of total RNA using Super-Script 
II (Invitrogen, Massachusetts, USA). SYBR No 
ROX Green I dye (SMOBIO Technology Inc, 
Hsinchu, Taiwan) was used for reverse-transcrip-
tion in a real-time PCR instrument (PCR max 
Eco 48), and mRNA levels of the HIF-a (F:5’-
GTCAACTGTGGAGCAACACG-3’; R:5’-
CGTCAAAAGACAGCC ACTCA-3’) and bFGF 
(F:5’- TGACAACTTTGGCATCGTGG-3’: R:5’- 
GGGCCATCCA CAGTCTTCTG-3’) were run 
using the respective primers. The thermocycler 
conditions used were as follows: initial step at 95 
°C for 10 minutes, followed by 50 cycles at 95 °C 
for 15 seconds, and 60 °C for 1 minute. The gene 
expression was recorded as the cycle threshold 
(Ct). Data were obtained using Eco Software v5.0 
(Illumina Inc, San Diego, CA, USA). All reactions 
were performed in triplicate, and data analysis 
used the 2−ΔΔ Ct method (Livak method) (24).
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Statistical analysis

All quantitative variables are expressed as mean 
and standard deviation (SD). The data obtained 
were collected, compiled and tested for normality 
with the Shapiro-Wilk test and homogeneity test 
with the Lavene test. Data analysis used one-way 
ANOVA and a least significant difference (LSD) 
comparison post hoc test p<0.05 indicated stati-
stical significance. 

RESULTS

MSCs characterization and differentiation

Our research revealed that MSCs have typical 
fibroblast-like, spindle-shaped cells with plastic 
adhering capabilities (Figure 1A). The differen-
tiation capacity in the end of the fifth passage 
expansion was also examined. The standard and 
osteogenic media were given for 21 days during 
the MSC-like osteogenic differentiation experi-
ment. Alizarin red dye staining was utilized to 
identify calcium deposits as a red appearance (Fi-
gure 1B). Moreover, the MSCs were successfully 
differentiated into adipogenic lineages while 
being stained with oil red-O (Figure 1C). Using 
flow cytometry, the immunophenotypical charac-
teristics of MSCs were examined. A high level of 
CD90 (97.80±2.10%) and CD29 (96.70±0.66%) 
and low level of CD45 (2.00±0.75%) and CD31 
(4.60±2.34%) was found (Figure 1D). 

SH-MSCs induced HIF-1a gene expression on 
acute RCT model

To determine the effects of SH-MSCs Group and 
NaCl vehicle Control Group on HIF-1α gene 
expression in acute RCT model rats, we obser-
ved at 2 different times, i.e., the two, 2nd and 8th 
week after the surgery and therapy administration. 
SH-MSCs significant increase the of HIF-1a gene 
expression up to 4.23±1.75-fold change compare 
to NaCl group for 2 weeks was found. Interestin-
gly, in 8-week SH-MSCs dramatically induced 
HIF-1a gene expression up to 16.45±4.39-fold 
change compare to NaCl group (Figure 2). 

Figure 1. A) MSCs characterization and differentiation. The black arrow presented the fibroblast-like cells (magnification10x, scale 
bar 100 µm); B) MSC differentiation. A red bright colour marked by the black arrow in a response to the calcium deposition in 
osteocyte-differentiated MSCs via staining by Alizarin red (magnification 40x, scale bar 50 µm); C) The red colour marked by the 
black arrow in a response to the lipid deposition under Oil-red O staining; D) The surface marker analysis of the expression of CD90, 
CD29, CD45, and CD31

A) B) C)

D)

Figure 2. The effect of secretome hypoxia mesenchymal stem 
cells (SH-MSCs) on HIF-1a gene expression on acute rotator 
cuff tear (RCT) model. RNA was extracted from tendon-bone 
of each group and analysed for mRNA expression by qRT-PCR 
(n=6±SD). Data are presented as fold change in gene ex-
pression relative to healthy group
*statistically significant
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SH-MSCs induced bFGF gene expression on 
acute RCT model

SH-MSCs significantly increased the bFGF gene 
expression up to 5.77±1.47-fold change compa-
red to NaCl group for 2 weeks. Interestingly, in 
8-week SH-MSCs dramatically induced bFGF 
gene expression up to 9.86±2.07-fold change 
compared to NaCl group (Figure 3). 

a decrease in cell apoptosis after administering 
exosomes MSCs in rats with bone fracture models 
(32,34). A previous study also reported that knock-
down of HIF-1α in vivo and in vitro significantly 
impair bone regeneration and osteogenesis of 
periosteum-derived mesenchymal stem cells, 
indicating the indispensability of the HIF-1α in 
bone regeneration under hypoxia (5,35). Because 
HIF-1α is degraded by proline hydroxylase under 
normoxia. Several cytokines and growth factors in 
SH-MSCs can activate osteogenesis of osteoblast-
precursors through integrin receptors and Wnt-β-
catenin signalling pathway (36). Hif-1α has also 
been reported to bind β-catenin and form the hif-
1α/β-catenin complex, accompanied by increased 
hif-1α transcriptional activity leading to cell sur-
vival and proliferation (37).
This study also showed that the administration 
of SH-MSCs can increase the expression of the 
bFGF gene which has an impact on improving the 
histomorphometric healing of the tendon to bone 
interface in the rat model of acute RCT. Previous 
study reported that increased bFGF gene expressi-
on leading to improved Achilles tendon healing in 
rabbit (38). Administration of the bFGF gene to 
the injured Achilles tendon will increase tendon 
strength through increased collagen, biomechani-
cal resistance and increased angiogenesis which 
plays a role in wound healing (39). In addition, 
the mechanism of accelerated wound healing is 
increased by the bFGF gene due to a shorter rege-
neration process, stronger tissue and better histo-
logy (40). The increased level of bFGF gene to the 
injured Achilles tendon will increase tendon stren-
gth through increased collagen level, biomechani-
cal resistance and increased angiogenesis, which 
plays a role in wound healing (41). SH-MSCs 
contained several bioactive factors such as EGF, 
HGF and bFGF that have protective properties in 
wound healing could activate the PI3K/Akt and/
or FAK/ERK1/2 signalling pathway (42–44). The 
activation of PI3K pathway was ameliorating the 
cell migration or proliferation through epithelial 
mesenchymal transition (EMT) form leading to 
wound healing (45,46). 
In conclusion, SH-MSCs are important in the he-
aling repair process of tendon-to-bone interface 
in acute RCT model rats through increasing gene 
expression of HIF-1α and bFGF. Those genes play 
indispensable roles in osteogenesis under hypoxic 

Figure 3. The effect of secretome hypoxia mesenchymal stem 
cells (SH-MSCs) on bFGF gene expression on acute rotator 
cuff tear (RCT) model. RNA was extracted from tendon-bone 
of each group and analysed for mRNA expression by qRT-PCR 
(n=6±SD). Data are presented as fold change in gene ex-
pression relative to healthy group
*statistically significant

DISCUSSION

The ability of MSCs to perform immunomodula-
tion and angiogenesis makes them strong candi-
dates for tissue repair therapy, including tendon-
bone repair (25–28). During the healing process of 
bone defects, a hematoma is first formed around 
the wound; growth factors are activated, and stem 
cell recruitment, proliferation and differentiation 
are activated (29).  Bone repair occurs under hy-
poxic conditions, HIF-1α is indispensable in bone 
repair. Several studies reported that MSCs under 
hypoxic conditions can increase HIF-1α expres-
sion (30,31). This phenomenon indicates that un-
der hypoxic conditions, MSCs have better survival 
ability due to increased transplantation effective-
ness and immunomodulation function (32,33). A 
previous study also reported that the hyper baric 
oxygen therapy or platelet rich plasma can improve 
the tendon repair or bone repair (27). In this study, 
it was found that SH-MSCs administration signifi-
cantly increased HIF-1α expression and was cor-
related with bone repair. The results of our study 
are in line with previous studies that there was a 
significant increase in HIF-1α gene expression and 
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