×
Home Current Archive Editorial board
News Contact
Review paper

Bone and cartilage condition in experimental osteoarthritis and hypothyroidism

By
Dmytriy Sergeevich Nosivets Orcid logo
Dmytriy Sergeevich Nosivets
Contact Dmytriy Sergeevich Nosivets

Department of General Medicine with a Course of Physical Therapy, Oles Honchar Dnipro National University, Dnipro, Ukraine

Abstract

Aim
To investigate changes in bone and cartilage tissue during the use of non-steroidal anti-inflammatory drugs and paracetamol in experimental osteoarthritis and hypothyroidism by the markers CTX-I and CTX-II.
Methods
The experiments were performed on 75 white nonlinear rats of both sexes, which recreated osteoarthritis and hypothyroidism. Experimental osteoarthritis was performed by single intra-articular administration of monoiodoacetic acid solution in the knee joint and experimental hypothyroidism was reconstructed by enteral administration of a solution of carbimazole. After the formation of the experimental models on the 42nd day of the experiment, the animals were divided into 14 groups and drug administration began daily for 5 days. The quantitative level of markers of blood serum was performed by specific kits, which are based on ELISA on 42 and 47 days of the experiment.
Results
The degree of influence on degenerative-dystrophic processes in bone tissue, which was assessed by the level of the marker СTX-I in the serum of rats, the studied drugs were as follows: diclofenac sodium > ibuprofen > nimesulide = meloxicam > celecoxib > paracetamol. According to the degree of influence on degenerative-dystrophic processes in cartilage tissue, which were assessed by the level of marker СTX-II in the serum of rats, the studied drugs were as follows: nimesulide > celecoxib > meloxicam > ibuprofen > diclofenac sodium > paracetamol.
Conclusion
Determination of the levels of CTX I and СTX II allows the evaluation of the bone and cartilage condition in experimental osteoarthritis and hypothyroidism.

References

1.
Іі E+ LT.
2.
ІІІ group EOA+EH + diclofenac sodium (D) 10 mg/kg (n=5). p. 295.
3.
ІV group EOA+EH + diclofenac sodium (D) + L-thyroxine (Т) (n=5).
4.
Eoa+eh + Ibuprofen.
5.
Vі Group Eoa+eh + Ibuprofen ; І) + Lthyroxine.
6.
VІІ group EOA+EH + meloxicam (Mel) 10 mg/kg (n=5).
7.
Vііі E, Mel ) + L-Thyroxine. * † (±1.65) 295.1* † (±1.24) 207.6* † (±1.18) ІХ group EOA+EH + paracetamol (P) 150 mg/kg (n=5).
8.
Eoa+eh + Paracetamol (p) + Lthyroxine.
9.
Хіі Group Eoa+eh + Nimesulide (n) + L-Thyroxine.
10.
Хіv Group Eoa+eh + Celecoxib (c) + Lthyroxine.
11.
Nosyvets D. Vlyianye funktsyonalnoi nedostatochnosty shchytovydnoi zhelezi na kostno-khriashchevuiu tkan (The effect of functional thyroid failure on bone and cartilage). Morfolohyia. 2019. p. 47–51.
12.
Graham R. Thyroid hormone actions in cartilage and bone. Eur Thyroid J. 2013. p. 3–13.
13.
Nosyvets D. Vlyianye kombynatsyy NPVS na techenye osteoartroza pry soputstvuiushchem hypotyreoze (The effect of a combination of NSAIDs on the course of osteoarthritis with concomitant hypothyroidism). Problemi endokrynnoi patolohyy; 2019. p. 40–5.
14.
Nosivets D. Mozhlyvist sumisnoho vykorystannia L-tyroksynu, dyklofenaku natriiu ta khondroitynu sulfatu pry hipotyreozi (Possibility of joint use of L-thyroxine, diclofenac sodium and chondroitin sulfate in hypothyroidism). Visnyk problem biolohii i medytsyny. 2019. p. 172–6.
15.
Mobasheri A, Bay-Jensen A, Spil W, Larkin J, Levesque M. Osteoarthritis year in review 2016: biomarkers (biochemical markers). Osteoarthritis and Cartilage. 2017. p. 199–208.
16.
Arends R, Karsdal M, Verburg K. Bay-Jensen AC. Biomarkers associated with rapid cartilage loss and bone destruction in osteoarthritis patients. Osteoarthritis Cartilage. 2016. p. 8–62.
17.
Yarmola E, Shah Y, Kloefkorn H, Dobson J, Allen K. Comparing intra-articular CTXII levels assessed via magnetic capture or lavage in a rat knee osteoarthritis model. Osteoarthritis Cartilage. 2017. p. 1189–94.
18.
Reznіkov O, Solovjov A, Dobrelya N. Stefanov OV. Bіoetichna ekspertiza doklіnіchnih ta іnshih naukovih doslіdzhen’, shcho vikonuyut’sya na tvarinah (metodichnі rekomendacії) (Bioethical examination of preclinical and other scientific research performed on animals (guidelines)). Bulletin of Pharmacology and Pharmacy. 2007. p. 47–61.
19.
Krishtal O, Chashchina M, Skrebcova K. Bіoetika: vіd teorії do praktiki (Bioethics: From Theory to Practice). Avіcena; 2021.
20.
European convention for the protection of vertebrate animals used for experimental and other scientific purposes. Council of Europe; 1986.
21.
Nosivets D. Eksperimentalnyie modeli patologii hryaschevoy tkani (Experimental models of cartilage tissue pathology. Zaporozhye medical journal. 2019. p. 554–60.
22.
Guingamp C, Gegout-Pottie P, Philippe. Mono-iodoacetate-induced experimental osteoarthritis: a dose-response study of loss of mobility, morphology, and biochemistry. Arthritis Rheum. 1997. p. 1670–9.
23.
Argumedo G, Sanz C, Olguín H. Experimental models of developmental hypothyroidism. Horm Metab Res. 2012. p. 79–85.
24.
Unіfіkovanij klіnіchnij protokol pervinnoї, vtorinnoї (specіalіzovanoї), tretinnoї (visokospecіalіzovanoї) medichnoї dopomogi ta medichnoї reabіlіtacії / Osteoartroz Уніфікований клінічний протокол первинної, вторинної (спеціалізованої), третинної (високоспеціалізованої) медичної допомоги та медичної реабілітації / Остеоартроз (Unified clinical protocol of primary, secondary (specialized), tertiary (highly specialized) medical care and medical rehabilitation / Osteoarthritis). 13AD.
25.
Mironov A. Rukovodstvo po provedeniyu doklinicheskih issledovaniy lekarstvennyih sredstv (Preclinical Drug Research Guide). Grif; 2012.
26.
Poloz A, Ayu F. Metodicheskie ukazaniya po gumannoy evtanazii zhivotnyih (Guidelines for the humane euthanasia of animals). Minsk/Belarus: Institute; 2008.
27.
Vo K. Prikladna statistika: navch. posibnik (Applied statistics: tutorial). KhNUMG named after OM Beketov; 2015.
28.
Löfvall H, Katri A, Dąbrowska A, Karsdal M. GPDPLQ1237-A type II collagen neo-epitope biomarker of osteoclast-and inflammation-derived cartilage degradation in vitro. Scientific Rep. 2019. p. 30–50.
29.
Wang X, Gao N, Liu T, Shen J. Application of biomarker CTX-II in osteoarthritis. Zhongguo Gu Shang. 2013. p. 260–3.
30.
Bai L, Wang Y, Ba G. Research progress of C terminal propeptide of collagen type II. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011. p. 66–9.
31.
Bai B, Li Y. Combined detection of serum CTX-II and COMP concentrations in osteoarthritis model rabbits: an effective technique for early diagnosis and estimation of disease severity. J Orthop Surg Res. 2016. p. 149.
32.
Lorenz H, Wenz W, Ivancic M, Steck E, Richter W. Early and stable upregulation of collagen type II, collagen type I and YKL40 expression levels in cartilage during early experimental osteoarthritis occurs independent of joint location and histological grading. Arthritis Res Ther. 2005. p. 156–65.
33.
Oestergaard S, Chouinard L, Doyle N, Karsdal M. The utility of measuring C-terminal telopeptides of collagen type II (CTX-II) in serum and synovial fluid samples for estimation of articular cartilage status in experimental models of destructive joint diseases. Osteoаrthritis Cartilage. 2006. p. 670–9.
34.
Song Y, Guan J, Wang H, Ma W. Possible involvement of serum and synovial fluid resistin in knee osteoarthritis: cartilage damage, clinical, and radiological links. J Clin Lab Anal. 2016. p. 437–43.
35.
Hosnijeh F, Siebuhr A, Uitterlinden A, Oei E. Association between biomarkers of tissue inflammation and progression of osteoarthritis: evidence from the Rotterdam study cohort. Arthritis Res Ther. 2016. p. 81.
36.
Karsdal M, Byrjalsen I, Jensen B, Henriksen A, Riis K, Christiansen B, et al. Biochemical markers identify influences on bone and cartilage degradation in osteoarthritis -the effect of sex, Kellgren-Lawrence (KL) score, Body Mass Index (BMI), oral salmon calcitonin (sCT) treatment and diurnal variation. BMC Musculoskelet Disord. 2010. p. 125.
37.
Klerk B, Lafeber F, Spil W. Associations of CTX-II with biochemical markers of bone turnover raise questions about its tissue origin: new insights from CHECK. Ann Rheum Dis. 2014. p. 39.
38.
Xin L, Wu Z, Qu Q, Wang R. Comparative study of CTX-II, Zn2+, and Ca2+ from the urine for knee osteoarthritis patients and healthy individuals. Medicine. 2017. p. 32.
39.
Sarukawa J, Takahashi M, Doi M, Suzuki D. Nagano A. A longitudinal analysis of urinary biochemical markers and bone mineral density in str/ort mice as a model of spontaneous osteoarthritis. Arthritis Rheum. 2010. p. 463–71.
40.
Arends R, Karsdal M, Verburg K. Bay-Jensen AC. Biomarkers associated with rapid cartilage loss and bone destruction in osteoarthritis patients. Osteoarthritis Cartilage. 2016. p. 8–62.
41.
Garnero P, Ayral X, Rousseau J, Christgau S. Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis. Arthritis Rheum. 2002. p. 2613–24.
42.
Ahmad Tantowi C, Lau N, S, Mohamed. Ficus deltoidea prevented bone loss in preclinical osteoporosis/osteoarthritis model by suppressing inflammation. Calcif Tissue Int. 2018. p. 388–99.
43.
Deveza L, Kraus V, Collins J, Guermazi A. The association between biochemical markers of bone turnover and bone changes on imaging -data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). 2017. p. 1179–91.
44.
Madzuki I, Lau S, Tantowi C, N, Ishak M, N, et al. Labisia pumila prevented osteoarthritis cartilage degeneration by attenuating joint inflammation and collagen breakdown in postmenopausal rat model. Inflammopharmacology. 2018. p. 1207–17.
45.
Watari T, Naito K, Sakamoto K, Kurosawa H. Evaluation of the effect of oxidative stress on articular cartilage in spontaneously osteoarthritic STR/OrtCrlj mice by measuring the biomarkers for oxidative stress and type II collagen degradation/synthesis. Expe Ther Med. 2011. p. 245–50.
46.
Mannelli L, Micheli L, Zanardelli M, Ghelardini C. Low dose native type II collagen prevents pain in a rat osteoarthritis model. BMC Musculoskelet Disord. 2013. p. 228.
47.
Madzuki I, Lau S, Abdullah R, Ishak M, N, Mohamed. Vernonia amygdalina inhibited osteoarthritis development by anti-inflammatory and anticollagenase pathways in cartilage explant and osteoarthritis-induced rat model. Phytother Res. 2019. p. 1784–93.
48.
Liu J, Wu C, Wang D, Wang L, Sun S. Acetylsalicylic acid combined with diclofenac inhibits cartilage degradation in rabbit models of osteoarthritis. Exp Ther Med. 2016. p. 2177–82.
49.
Huang H, Luo M, Liang H, Pan J, Yang W, Zeng L, et al. Meta-analysis comparing celecoxib with diclofenac sodium in patients with knee osteoarthritis. Pain Med. 2021. p. 352–62.
50.
Bell N, Hollis B, Shary J, Eyre D, Eastell R, Colwell A, et al. Diclofenac sodium inhibits bone resorption in postmenopausal women. Am J Med. 1994. p. 349–53.

Citation

Authors retain copyright. This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.