×
Home Current Archive Editorial board
News Contact
Review paper

Molecular epidemiology and antimicrobial susceptibility of AmpC- and/or extended-spectrum (ESBL) ß-lactamaseproducing Proteus spp. clinical isolates in Zenica-Doboj Canton, Bosnia and Herzegovina

By
Selma Uzunović ,
Selma Uzunović

Department for Laboratory Diagnostics, Institute for Public Health and Food Safety, Zenica, Bosnia and Herzegovina

Amir Ibrahimagić ,
Amir Ibrahimagić
Contact Amir Ibrahimagić

Department for Laboratory Diagnostics, Institute for Public Health and Food Safety Zenica, Zenica, Bosnia and Herzegovina

Branka Bedenić
Branka Bedenić

School of Medicine, University of Zagreb, Zagreb, Croatia

Clinical Department of Clinical and Molecular Microbiology, University Hospital Center Zagreb, Zagreb, Croatia

Abstract

Aim
To investigate prevalence, antimicrobial susceptibility, molecular characteristics, and genetic relationship of AmpC- and/
or extended spectrum beta lactamase (ESBL)- producing Proteus spp. clinical isolates in Zenica-Doboj Canton, Bosnia and Herzegovina.
Methods
Antibiotic susceptibility was determined by disc diffusion and broth microdilution methods according to CLSI guidelines. Double-disk synergy test was performed in order to screen for ESBLs, and combined disk test with phenylboronic acid to detect AmpC β -lactamases. PCR was used to detect blaESBL/blacarb genes. Genetic relatedness of the strains was determined by pulsed-fieldgel-electrophoresis (PFGE).
Results
Eleven ESBL-producing isolates were included in the study (six inpatients and five outpatients). Susceptibility rate to
amoxicillin-clavulanic acid, imipenem and meropenem was 100%. Resistance rate to cefuroxime was 100%, gentamicine 90.9%, piperacillin/tazobactam 81.8%, cefotaxim, ceftriaxone and ceftazidime 72.7%, cefoxitine and ciprofloxacine 63.6% and to cefepime 45.5%. In five (out of 11) isolates multi-drug resistance (MDR) to cephalosporins, cefamicines, amynocligosides and fluoroquinolones was detected. Besides TEM-1 which was detected in all isolates, CTX-M+OXA-1 β-lactamases were detected in seven (out of 11; 63.6%) isolates (five blaCTX-M-1 and two blaCTX-M-15 genes),
and CMY-2 β-lactamase in two isolates. PFGE showed no genetic relatedness.
Conclusion
Because of high prevalence of MDR strains in epidemiologically unrelated patients with AmpC- and/or ESBL producing Proteus spp. infection, further surveillance is needed. Molecular characterization and strain typing, or at least phenotypic test for AmpC/ESBL production is important for appropriate therapy and the detection of sources and modes of spread, which is the main step in order to design targeted infection control strategies.

References

1.
Malekjamshidi M, Shahcheraghi F, Feizabadi M. Detection and PFGE analysis of ESBL-producing isolates of Proteus species isolated from patients at Tehran hospitals. Med Sci Monit. 2010. p. 327–32.
2.
Biendo M, Thomas D, Laurans G, Hamdad-Daoudi F, Canarelli B, Rousseau F, et al. Molecular diversity of Proteus mirabilis isolates producing extended-spectrum beta-lactamases in a French university hospital. Clin Microbiol Infect. 2005. p. 395–401.
3.
Chanal C, Bonnet R, Champs D, Sirot C, Labia D, Sirot R, et al. Prevalence of beta-lactamases among 1,072 clinical strains of Proteus mirabilis: a 2-year survey in a French hospital. Antimicrob Agents Chemother. 2000. p. 1930–5.
4.
Perilli M, Dell’amico E, Segatore B, De Massis M, Bianchi C, Luzzaro F, et al. Molecular characterization of extended-spectrum beta-lactamases produced by nosocomial isolates of Enterobacteriaceae from an Italian nationwide survey. J Clin Microbiol. 2002. p. 611–4.
5.
Logan L, Braykov N, Weinstein R, Laxminarayan R. Extended-Spectrum β-Lactamase-Producing and Third-Generation Cephalosporin-Resistant Enterobacteriaceae in Children: Trends in the United States, 1999-2011. J Pediatric Infect Dis Soc. 2014. p. 320–8.
6.
El-Hady S, Adel L. Occurrence and detection of AmpC β-lactamases among Enterobacteriaceae isolates from patients at Ain Shams University Hospital. Egypt J Med Hum Genet. 2015. p. 239–44.
7.
Adwan G, Jaber A. Frequency and molecular characterization of β-lactamases producing Escherichia coli isolated from North of Palestine. BMRJ. 2016. p. 1–13.
8.
Mac Aogáin M, Rogers T, Crowley B. Identification of emergent bla CMY-2 -carrying Proteus mirabilis lineages by whole-genome sequencing. New Microbes New Infect. 2015. p. 58–62.
9.
Wollheim C, Guerra I, Conte V, Hoffman S, Schreiner F, Delamare A, et al. Nosocomial and community infections due to class A extended-spectrum β-lactamase (ESBLA)-producing Escherichia coli and Klebsiella spp. in southern Brazil. Braz J Infect Dis. 2011. p. 138–43.
10.
Grover N, Sahni A, Bhattacharya S. Therapeutic challenges of ESBLS and AmpC beta-lactamase producers in a tertiary care center. Med J Armed Forces India. 2013. p. 4–10.
11.
Endimiani A, Luzzaro F, Brigante G, Perilli M, Lombardi G, Amicosante G, et al. Proteus mirabilis bloodstream infections: risk factors and treatment outcome related to the expression of extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2005. p. 2598–605.
12.
Wang J, Chen P, Chang S, Shiau Y, Wang H, Lai J, et al. Lauderdale TL1; TSAR Hospitals. Antimicrobial susceptibilities of Proteus mirabilis: a longitudinal nationwide study from the Taiwan surveillance of antimicrobial resistance (TSAR) program. BMC Infect Dis. 2014. p. 486.
13.
Aragón L, Mirelis B, Miró E, Mata C, Gómez L, Rivera A, et al. Increase in beta-lactamresistant Proteus mirabilis strains due to CTX-M-and CMY-type as well as new VEB-and inhibitor-resistant TEM-type beta-lactamases. J Antimicrob Chemother. 2008. p. 1029–32.
14.
Hassan M, Alkharsah K, Alzahrani A, Obeid O, Khamis A, Diab A. Detection of extended spectrum beta-lactamases-producing isolates and effect of AmpC overlapping. J Infect Dev Ctries. 2013. p. 618–29.
15.
Pagani L, Migliavacca R, Pallecchi L, Matti C, Giacobone E, Amicosante G, et al. Emerging extended-spectrum beta-lactamases in Proteus mirabilis. J Clin Microbiol. 2002. p. 1549–52.
16.
Chong Y, Shimoda S, Yakushiji H, Ito Y, Miyamoto T, Kamimura T, et al. Community spread of extended-spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis: a long-term study in Japan. J Med Microbiol. 2013. p. 1038–43.
17.
Ibrahimagić A, Bedenić B, Kamberović F, Uzunović S. High prevalence of CTX-M-15 and first report of CTX-M-3, CTX-M-22, CTX-M-28 and plasmid-mediated AmpC beta-lactamase producing Enterobacteriaceae causing urinary tract infections in Bosnia and Herzegovina in hospital and community settings. J Infect Chemother. 2015. p. 363–9.
18.
Performance Standards for Antimicrobial Susceptibility Testing. Nineteenth informational Supplement. M100-S19. CLSI; 2009.
19.
Coudron P. Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol. 2005. p. 4163–7.
20.
Tenover F, Emery S, Spiegel A, Bradford P, Eels S, Endimiani A, et al. Identification of plasmid-mediated AmpC beta-lactamases in Escherichia coli, Klebsiella spp., and Proteus spp. can potentially improve reporting of cephalosporins susceptibility testing results. J Clin Microbiol. 2009. p. 294–9.
21.
Song W, Hong S, Yong D, Jeong S, Kim H, Kim H, et al. Combined use of the modified Hodge test and carbapenemase inhibition test for detection of carbapenemase-producing Enterobacteriaceae and metallo-β-lactamase-producing Pseudomonas spp. Ann Lab Med. 2015. p. 212–9.
22.
Dallenne C, Costa D, Decre A, Favier D, Arlet C, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010. p. 490–5.
23.
Lahey Clinic. ß-Lactamase classification and amino acid sequences for TEM, SHV and OXA extendedspectrum and inhibitor resistant enzymes.
24.
Gulamber C, Altindis M, Kalayci R, Bozdogan B, Aktepe O. Molecular characterization of nosocomial CTX-M type β-lactamase producing Enterobacteriaceae from University Hospital in Turkey. Afr J Microbiol Res. 2012. p. 5552–7.
25.
Pasanen T, Jalava J, Horsma J, Salo E, Pakarinen M, Tarkka E, et al. An outbreak of CTX-M-15-producing Escherichia coli, Enterobacter cloacae, and Klebsiella in a children’s hospital in Finland. Scand J Infect Dis. 2014. p. 225–30.
26.
Kaufman M. Molecular biology. Protocols and clinical applications. 1st Ed. Humana Press, Inc. Totowa; 1998. p. 33–51.
27.
Tenover F, Arbeit R, Goerling R, Mickelsen P, Murray B, Persing D, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis; criteria for bacterial strain typing. J Clin Microbiol. 1995. p. 2233–9.
28.
Nagano N, Shibata N, Saitou Y, Nagano Y, Arakawa Y. Nosocomial outbreak of infections by Proteus mirabilis that produces extended-spectrum CTX-M-2 type beta-lactamase. J Clin Microbiol. 2003. p. 5530–6.
29.
Nakamura T, Komatsu M, Yamasaki K, Fukuda S, Miyamoto Y, Higuchi T, et al. Epidemiology of Escherichia coli, Klebsiella species, and Proteus mirabilis strains producing extended-spectrum β-lactamases from clinical samples in the Kinki Region of Japan. Am J Clin Pathol. 2012. p. 620–6.
30.
Tijjani J, Arzai A, Sadiq N. Antimicrobial susceptibility pattern of extended spectrum betalactamase producers in Gram-negative urogenital isolates in Kano. Nigeria. Bayero Journal of Pure and Applied Sciences. 2012. p. 20–5.
31.
Datta P, Gupta V, Arora S, Garg S, Chander J. Epidemiology of extended-spectrum β-lactamase, AmpC, and carbapenemase production in Proteus mirabilis. Jpn J Infect Dis. 2014. p. 44–6.
32.
Tonkic M, Mohar B, Sisko-Kraljević K, Mesko-Meglic K, Goić-Barisić I, Novak A, et al. Punda-Polić V. High prevalence and molecular characterization of extended-spectrum β-lactamase-producing Proteus mirabilis strains in southern Croatia. J Med Microbiol. 2010. p. 1185–90.
33.
Kateregga J, Kantume R, Atuhaire C, Lubowa M, Ndukui J. Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago Hospital. BMC Pharmacol Toxicol. 2015. p. 14.
34.
Endimiani A, Luzzaro F, Brigante G, Perilli M, Lombardi G, Amicosante G, et al. Proteus mirabilis bloodstream infections: risk factors and treatment outcome related to the expression of extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2005. p. 2598–605.
35.
Performance Standards for Antimicrobial Susceptibility Testing. Twenty-fourth Informational Supplement. M100-S24. Clinical and Laboratory Standards Institute (CLSI). CLSI; 2014.
36.
Mshana S, Kamugisha E, Mirambo M, Chakraborty T, Lyamuya E. Prevalence of multiresistant gramnegative organisms in a tertiary hospital in Mwanza, Tanzania. BMC Res Notes. 2009. p. 49.
37.
November 2015 Update -CRE Toolkit.
38.
Alabi S, Mendonca N, Adeleke O, Silva D, G. Antimicrobial resistance and prevalence of extendedspectrum beta-lactamase Proteus spp. strains from southwestern Nigeria hospitals. 23 rd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). Clin Microbiol Infect. 27AD.
39.
Seral C, Gude M, Castillo F. Emergence of plasmid mediated AmpC β-lactamasas: origin, importance, detection and therapeutical options. Rev Esp Quimioter. 2012. p. 89–99.
40.
Zhanel G, Lawson C, Adam H, Schweizer F, Zelenitsky S, Lagacé-Wiens P, et al. Ceftazidime-avibactam: a novel cephalosporin/ β-lactamase inhibitor combination. Drugs. 2013. p. 159–77.
41.
Karlowsky J, Biedenbach D, Kazmierczak K, Stone G, Sahm D. The activity of ceftazidimeavibactam against extended-spectrum and AmpC β-lactamase-producing Enterobacteriaceae collected in the INFORM Global Surveillance Study in 2012-2014. Antimicrob Agents Chemother. 2016.
42.
Molekularna epidemiologija i antimikrobna osjetljivost kliničkih izolata Proteus spp. koji produciraju AmpC-i/ili beta-laktamaza proširenog spektra djelovanja u Zeničko-Dobojskom kantonu. Bosna i Hercegovina Selma Uzunović 1 , Amir Ibrahimagić. p. 3.
43.
Institut za zdravlje i sigurnost hrane Zenica, 2 Medicinski fakultet, Sveučilište u Zagrebu, 3 Klinički zavod za kliničku i molekularnu mikrobiologiju, Klinički bolnički centar Zagreb, Zagreb, Hrvatska SAŽETAK Cilj Istražiti prevalenciju, molekularne karakteristike i klonsku pripadnost kliničkih izolata Proteus spp. koji produciraju AmpC-i(li) beta (β)-laktamaze proširenog spektra (ESBL).
44.
Za potvrdu lučenja ESBL-a i AmpC-a korišten je PCR. Klonska pripadnost izolata ispitivana je uz pomoć elektroforeze u pulsirajućem polju (PFGE).
45.
AmpC-i(li) ESBL-producirajućih Proteus spp. izolata. Svi izolati su pokazali 100% osjetljivost na amoksicilin/klavulansku kiselinu, imipenem i meropenem. Rezistencija na cefuroksim zabilježena je u 100%, na gentamicin 90,9%, piperacilin/tazobaktam 81,8%, cefotaksim, ceftriakson i ceftazidim 72,7%, cefoksitin i ciprofloksacin 63,6% i na cefepim u 45,5% slučajeva. TEM-1 β-laktamaza detektirana je kod svih izolata.
46.
6%) izolata dodatno iCTX-M (pet CTX-M-1 i dvije CTX-M-15) i OXA-1 β-laktamaze. Dva izolata su producirala CMY-2 β-laktamazu, dok SHV beta-laktamaze nisu zabilježene. Nije zabilježena klonska pripadnost. Zaključak Molekularna karakterizacija i tipizacija, te fenotipski testovi za detekciju AmpC i ESBLproducirajućih Proteus spp. izolata, kao i drugih gram-negativnih bakterija, važni su koraci u dizajniranju i primjeni terapije, u detekciji izvora i širenju izolata, kao i za pripremu strategije u sprečavanju širenja ovih infekcija.

Citation

Authors retain copyright. This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.