×
Home Current Archive Editorial board
News Contact
Review paper

Computer-assisted navigation for intramedullary nailing of intertrochanteric femur fractures: a preliminary result

By
Michele Coviello Orcid logo ,
Michele Coviello
Contact Michele Coviello

Department of Basic Medical Science, Neuroscience and Sensory Organs, Azienda Ospedaliero Universitaria Consorziale Policlinico , Bari , Italy

Francesco Ippolito ,
Francesco Ippolito

Orthopaedic and Traumatology Unit, "Di Venere" Hospital, Via Ospedale di Venere, Bari , Bari , Italy

Antonella Abate ,
Antonella Abate

Orthopaedic and Traumatology Unit, "Di Venere" Hospital, Via Ospedale di Venere, Bari , Bari , Italy

Giacomo Zavattini ,
Giacomo Zavattini

Department of Basic Medical Science, Neuroscience and Sensory Organs, Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari , Bari , Italy

Domenico Zaccari ,
Domenico Zaccari

Department of Basic Medical Science, Neuroscience and Sensory Organs, Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari , Bari , Italy

Andrea Leone ,
Andrea Leone

Department of Basic Medical Science, Neuroscience and Sensory Organs, Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari , Bari , Italy

Giovanni Noia ,
Giovanni Noia

Orthopaedics Unit, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery,, University of Foggia, Policlinico Riuniti di Foggia , Foggia , Italy

Vincenzo Caiaffa ,
Vincenzo Caiaffa

Orthopaedic and Traumatology Unit, "Di Venere" Hospital, Via Ospedale di Venere, Bari , Bari , Italy

Giuseppe Maccagnano
Giuseppe Maccagnano

Orthopaedics Unit, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Foggia, Policlinico Riuniti di Foggia , Foggia , Italy

Abstract

Aim
To demonstrate a reduction of risk factors ray-depending in proximal femur nailing of intertrochanteric femur fractures,
comparing standard technique with computer-assisted navigation system.
Methods
One hundred patients hospitalised between October 2021 and June 2022 with intertrochanteric femur fractures type 31-A1
and 31-A2 were prospectively enrolled and divided randomly into two groups. A study group was treated with computer-assisted navigation system ATLAS (Masmec Biomed, Modugno, Bari, Italy) (20 patients), while a control group received the standard nailing technique. The same intertrochanteric nail was implanted by a single senior surgeon, Endovis BA 2 (EBA2, Citieffe, Calderara di Reno, Bologna, Italy). The following data were recorded: the setup time of operating room (STOR; minutes); surgical time (ST; minutes); radiation exposure time (ETIR; seconds) and dose area
product (DAP; cGy·cm2).
Results
Patients underwent femur nailing with computer-assisted navigation system reported more set-up time of operating room
(24.87±4.58; p<0.01), less surgical time (26.15±5.80; p<0.01), less time of radiant exposure (4.84±2.07; p<0.01) and lower dose area product (16.26±2.91; p<0.01).
Conclusion
The preliminary study demonstrated that computerassisted navigation allowed a better surgical technique standardization, significantly reduced exposure to ionizing radiation, including a reduction in surgical time. The ATLAS system could also
play a key role in residents improving learning curve.

References

1
Lan H, Tan Z, Kn L, Jh G, Th L. Intramedullary nail fixation assisted by orthopaedic robot navigation for intertrochanteric fractures in elderly patients. Orthop Surg 2019:255–62.
2
Caiaffa V, Vicenti G, Mori C, Panella A, Conserva V, Corina G, et al. Is distal locking with short intramedullary nails necessary in stable pertrochanteric fractures? A prospective, multicentre, randomised study. Injury 2016:98–106.
3
Italian society of orthopaedics and traumatology. Proximal femur fractures in the elderly guidelines 2011;(11).
4
Augat P, Bliven E, Hackl S. Biomechanics of femoral neck fractures and implications for fixation. J Orthop Trauma 2019:27–32.
5
Socci A, Casemyr N, Leslie M, Baumgaertner M. Implant options for the treatment of intertrochanteric fractures of the hip. Bone & Joint 2017:128–33.
6
Ziranu A, Noia G, Cipolloni V, Coviello M, Maccagnano G, Liuzza F, et al. Revision surgery using retrograde nail versus replating in nonunion distal femur fracture treated with plate. Adv Orthop 2022:1–8.
7
David G, Umberto M, Cioancă R, F, Alfonso A, Cristina C, et al. Metabolic shock in elderly pertrochanteric or intertrochanteric surgery. Comparison of three surgical methods. Is there a much safer? Rom J Anaesth Intensive Care 2020:17–26.
8
Ripani U, Manzarbeitia-Arroba P, Guijarro-Leo S, Urrutia-Graña J, Masi-De Luca D, A. Vitamin C may help to reduce the knee’s arthritic symptoms. Outcomes assessment of nutriceutical therapy. Med Arch 2019:173–7.
9
Duan S-J, Liu H, -S, Wu W, -C, Yang K, et al. Robot-assisted percutaneous cannulated screw fixation of femoral neck fractures: preliminary clinical results. Orthop Surg 2019:34–41.
10
Prasarn M, Cattaneo M, Achor T, Ahn J, Klinger C, Helfet D, et al. The effect of entry point on malalignment and iatrogenic fracture with the Synthes lateral entry femoral nail. J Orthop Trauma 2010:224–9.
11
Ryan S, Politzer C, Green C, Wellman S, Bolognesi M, Seyler T. Albumin versus American Society of Anesthesiologists Score: which is more predictive of complications following total joint arthroplasty? Orthopedics 2018:354–62.
12
Schiavone A, Bisaccia M, Inkov I, Rinonapoli G, Manni M, Rollo G, et al. Tranexamic acid in pertrochanteric femoral fracture: is it a safe drug or not. Folia Med (Plovdiv) 2018:67–78.
13
Suero E, Westphal R, Citak M, Hawi N, Liodakis E, Krettek C, et al. Robotic technique improves entry point alignment for intramedullary nailing of femur fractures compared to the conventional technique: a cadaveric study. J Robot Surg 2018:311–5.
14
Liebergall M, Ben-David D, Weil Y, Peyser A, Mosheiff R. Computerized navigation for the internal fixation of femoral neck fractures. J Bone Joint Surg Am 2006:1748–54.
15
Hayda R, Hsu R, Depasse J, Gil J. Radiation exposure and health risks for orthopaedic surgeons. J Am Acad Orthop Surg 2018:268–77.
16
Matityahu A, Duffy R, Goldhahn S, Joeris A, Richter P, Gebhard F. The great unknown-a systematic literature review about risk associated with intraoperative imaging during orthopaedic surgeries. Injury 2017:1727–34.
17
Honl M, Schwieger K, Gauck C, Lampe F, Morlock M, Wimmer M, et al. Pfannenposition Und Orientierung Im Vergleich Orthopäde 2005:1131–6.
18
Myden C, Anglin C, Kopp G, Hutchison C. Computer-assisted surgery simulations and directed practice of total knee arthroplasty: educational benefits to the trainee. Comput Aided Surg 2012:113–27.
19
Takai H, Mizuta K, Murayama M, Nakayama D, Kii S, Hayai C, et al. Comparing the usefulness of a fluoroscopic navigation system in femoral trochanteric fracture for orthopaedic residents with the conventional method. Injury 2020:1840–5.
20
Lee H, Song S, Bae D, Park C. The influence of computer-assisted surgery experience on the accuracy and precision of the postoperative mechanical axis during computer-assisted lateral closing-wedge high tibial osteotomy. Knee Surg Relat Res 2019:15.
21
Gowda S, Mitchell C, Abouel-Enin S, Lewis C. Radiation risk amongst orthopaedic surgeons -Do we know the risk? J Perioper Pract 2019:115–21.
22
Maccagnano G, Solarino G, Pesce V, Vicenti G, Coviello M, Nappi V, et al. Plate vs reverse shoulder arthroplasty for proximal humeral fractures: The psychological health influence the choice of device? World J Orthop 2022:297–306.
23
Rinonapoli G, Ruggiero C, Meccariello L, Bisaccia M, Ceccarini P, Caraffa A. Osteoporosis in men: a review of an underestimated bone condition. Int J Mol Sci 2021:2105.
24
Bisaccia M, Meccariello L, Ripani U, Pace V, Rollo G, Ibáñez-Vicente C, et al. Caraffa A. Osteoporosis in male patients: epidemiology, clinical aspects and DEXA scan assessment. Clin Cases Miner Bone Metab 2019:31–5.
25
Gupta R, Gupta V, Gupta N. Outcomes of osteoporotic trochanteric fractures treated with cement-augmented dynamic hip screw. Indian J Orthop 2012:640–5.
26
Rinonapoli G, Pace V, Ruggiero C, Ceccarini P, Bisaccia M, Meccariello L, et al. Obesity and bone: a complex relationship. Int J Mol Sci 2021:13662.
27
Zhang Y, Zhang S, Wang S, Zhang H, Zhang W, Liu P, et al. Long and short intramedullary nails for fixation of intertrochanteric femur fractures (OTA 31-A1, A2 and A3): A systematic review and meta-analysis. Orthop Traumatol Surg Res 2017:685–90.
28
Lanzetti R, Caraffa A, Lupariello D, Ceccarini P, Gambaracci G, Meccariello L, et al. Comparison between locked and unlocked intramedullary nails in intertrochanteric fractures. Eur J Orthop Surg Traumatol 2018:649–58.
29
Kubiak E, Beebe M, North K, Hitchcock R, Potter M. Early weight bearing after lower extremity fractures in adults. J Am Acad Orthop Surg 2013:727–38.
30
Meccariello L, Bisaccia M, Ronga M, Falzarano G, Caraffa A, Rinonapoli G, et al. Locking retrograde nail, non-locking retrograde nail and plate fixation in the treatment of distal third femoral shaft fractures: radiographic, bone densitometry and clinical outcomes. J Orthop Traumatol 2021:33.
31
Carvajal-Pedrosa C, Gómez-Sánchez R, Hernández-Cortés P. Comparison of outcomes of intertrochanteric fracture fixation using percutaneous compression plate between stable and unstable fractures in the elderly. J Orthop Trauma 2016:201-e206.
32
Moretti L, Coviello M, Rosso F, Calafiore G, Monaco E, Berruto M, et al. Current trends in knee arthroplasty: are Italian surgeons doing what is expected? 2022.
33
Jones C, Jerabek S. Current role of computer navigation in total knee arthroplasty. J Arthroplasty 2018:1989–93.
34
Zhang Q, Han X, Xu Y, Fan M, Zhao J, Liu Y, et al. Robotic navigation during spine surgery. Expert Rev Med Devices 2020:27–32.
35
Huntsman K, Riggleman J, Ahrendtsen L. Ledonio CG. Navigated robot-guided pedicle screws placed successfully in single-position lateral lumbar interbody fusion. Robot Surg 2020:643–7.
36
Figueroa F, Wakelin E, Twiggs J, Fritsch B. Comparison between navigated reported position and postoperative computed tomography to evaluate accuracy in a robotic navigation system in total knee arthroplasty. Knee 2019:869–75.
37
Ciolli G, Caviglia D, Vitiello C, Lucchesi S, Pinelli C, Mauro D, et al. Navigated percutaneous screw fixation of the pelvis with O-arm 2: two years’ experience. Med Glas (Zenica) n.d.:309–15.
38
Crookshank M, Edwards M, Sellan M, Whyne C, Schemitsch E. Can fluoroscopy-based computer navigation improve entry point selection for intramedullary nailing of femur fractures? Clin Orthop Relat Res 2014:2720–7.
39
Von Elm E, Altman D, Egger M, Pocock S, Gøtzsche P, Vandenbroucke J. STROBE Initiative. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 2008:344–9.
40
Marsh J, Slongo T, Agel J, Broderick J, Creevey W, Decoster T, et al. Fracture and Dislocation Classification Compendium -2007. J Orthop Trauma 2007:1-S6.

Citation

Authors retain copyright. This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.