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ABSTRACT 

Aim Diabetes type 2 (DT2) is a metabolic disease characterized by high blood sugar 

caused by insulin resistance and/or insufficient insulin production. The pathogenesis of 

DT2 is complicated by both genetic predisposition and environmental and lifestyle vari-

ables. At least 150 genetic variants have been linked to the probability of having DT2. 

The aim of this study was to determine the expression of PLD6, CHRAC1, and PDCD5 

genes in type 2 diabetic patients.  

Methods Information on 12 DT2 patients was obtained from the Gene Expression Om-

nibus (GEO) using the series identification (ID) (GSE34008). The analysis tools 

GEO2R, String Utils (STRING), University of ALabama at Birmingham Cancer data 

analysis (UALCAN), and the Cancer Genome Atlas (TCGA) were used. The human 

protein atlas provided details on gene cancer. 

Results Only ten genes with expression differences ranging from low to high were se-

lected. PLD6, CHRAC1, and PDCD5 were detected to have higher expression in pa-

tients compared to controls. The number of patients with primary pancreatic adenocarci-

noma for SLC16A4, DERK2, and CHRAC1 was greater than that of healthy controls. 

Concerning the severity of cancer, all chosen genes demonstrated a greater proportion of 

affected individuals compared to the control group.  

Conclusion There are multiple genes whose increased expression is linked to type 2 

diabetes. 
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INTRODUCTION 

Diabetes type 2 has become a major public health con-

cern (1,2). Previously regarded as a problem solely 

affecting Western people, the disease is quickly reaching 

worldwide significance. Important roles in defining DT2 

risk are played by lifestyle and behavioural factors. In 

humans, a combination of low birth weight and rapid 

growth during childhood has been linked to reduced 

glucose tolerance in maturity (3,4). The islets of Lang-

erhans play a vital role in the development of DT2. 

Under normal circumstances, an increase in blood sugar 

levels following a meal causes the pancreas to release 

insulin. Several genes are related to DT2 on specific 

chromosomes, as proven by genome-wide linkage anal-

yses (5,6). Numerous genes are active in ꞵ-cells or may 

be involved in insulin production, which lends credence 

to the theory that ꞵ-cell dysfunction is a crucial final 

step on the path to diabetes (7). Few genes appear to be 

involved in insulin sensitivity, and genes involved in the 

insulin signalling pathway show infrequently in DT2 

genome-wide association studies (GWAS) analyses. 

Genes discovered through genome-wide association 

research affect the size or function of ꞵ -cells (8,9). 

Discoveries suggest that epigenetic mechanisms are 

likely involved in DT2 as a crucial interface between the 

genetic and environmental effects. Epigenetic modifica-

tions are reversible changes that occur without modify-

ing the DNA sequence (10,11). 

According to the findings of some studies, there are at 

least 150 genetic variants that can be related to the like-

lihood of having DT2. The majority of these alterations 

are common and can be found in both persons with and 
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without diabetes. Every individual has some variations 

that increase the risk and others that decrease the dan-

ger. The combination of these alterations influences a 

person's proclivity to develop the disease (12). 

The age group between 35- 60 years old has the highest 

heritability estimates for DT2. GWAS have been crucial 

in advancing our understanding of the genetic architec-

ture of type 2 diabetes within the past decade. Accord-

ing to one study, those who carry risk mutations in DT2 

susceptibility genes are unable to alter their insulin 

secretion in response to lower insulin sensitivity (13,14). 

Now, new processes in the pathophysiology of diseases 

like DT2 are being uncovered, and the genetic landscape 

of DT2 is becoming clearer. Recent advancements in 

systematic and unbiased large-scale genotyping and 

sequencing approaches undoubtedly open the door for 

future discoveries and unprecedented revelations (15). 

Phospholipase D family member 6 (PLD6) is a member 

of the phospholipase D family of mitochondrial en-

zymes. It changes cardiolipin on the cytoplasmic surface 

of mitochondria into phosphatidic acid, which causes 

mitochondria to join together. The most malignant tis-

sues have moderate cytoplasmic positivity for PDL6 

expression. A few cases of thyroid, carcinoid, prostatic, 

and pancreatic cancers showed high activity (16,17). 

Programmed cell death 5 (PDCD5) (TF-1) is a protein 

that contains 125 amino acid residues. Apoptosis-related 

gene PDCD5 was cloned from human leukaemia cells in 

1999. PDCD5 protein was expressed in many cell lines, 

suggesting it regulates pathological and physiological 

processes. Breast, astrocytic glioma, hepatocellular 

carcinoma, gastric cancer, and chronic myelogenous 

leukaemia had a decreased PDCD5 expression (18). 

CHRAC1 (YCL1) is a histone-fold protein that  inter-

acts with other histone-fold proteins to bind DNA in a 

sequence-independent way. These histone-fold protein 

dimers are responsible for the generation of bigger en-

zymatic complexes, which are then used for DNA tran-

scription, replication, and packing (19,20). 

The aim of this study was to identify genes linked to 

DT2 by assessing their expression levels with microar-

rays. 

PATIENTS AND METHODS 

Patients and study design 

Pancreatic islets of Langerhans were isolated from the 

pancreas of two groups: group 1 included 12 DT2 patients 

and group 2 included 12 healthy donors. The information 

was obtained from the Gene Expression Omnibus (GEO) 

using the series identification (ID) (GSE34008) (16). 

Methods 

The Microarray gene expression kit was used to analyse 

all of the samples (Affymetrix GeneChip, Santa Clara, 

CA, USA). A total of 1900 genes were analysed using 

bioinformatics tools. We performed a broad scan of 

microarray-identified genes in this study. Many bioin-

formatics techniques were utilized to discover genes that 

have a direct influence on the onset of DT2. The level of 

expression for the genes that have a direct effect on the 

condition had to be measured as well. GEO2R was used 

to analyse gene expression. 

StringUtils (STRING) tool was used to detect the pro-

tein-protein interaction. Using the ALabama at Bir-

mingham CANcer data analysis (UALCAN) server, the 

heat map of the specified genes was generated.  

Individuals diagnosed with DT2 have their genes exper-

imented on pancreatic adenocarcinoma (PAAD). Several 

genes were examined, and it was shown that the relative 

expression levels of each gene across the primary tu-

mour according to the Cancer Genome Atlas (TCGA) 

analysis samples.  

The STRING database includes information on both 

experimental and computational prediction approaches. 

The algorithm uses functional genomic data to accurate-

ly evaluate the degree of interaction between proteins. 

By evaluating the data, it is able to construct effective 

interaction maps that are vital in understanding the pro-

gression of the illness as a result of interactions between 

proteins.  

The UALCAN tool examines cancer-related data. It 

generates the necessary data and charts after identifying 

the genes that cause cancer. The unique data is obtained 

from patients who underwent genetic analysis. The 

program analyses clinical protein consortium data, 

which includes complete proteomics. It also analyses 

the gene and protein expression in juvenile brain tu-

mours. 

The (TCGA) initiative identifies the molecular composi-

tion of over 20,000 genes from primary cancer cases 

and then compares them to normal samples from 33 

confirmed cancer types. 

Statistical analysis 

Volcano diagram showed differentially expressed genes 

(-log10 p-value) vs the magnitude of change (log2 fold 

change). The limma (Venn diagram) approach was used 

to examine and download gene overlap between several 

comparisons. The genes in each Venn diagram region 

can be downloaded by selecting the relevant contrasts. 

The values of the selected samples were plotted using a 

box plot. Samples were randomly assigned to the DT2 

and control groups and were each given a different col-

our. The width of the distribution can be used to judge 

the suitability of the chosen samples for differential 

expression analysis.  The density plot was used to esti-

mate the sample distribution values based on the colour 

group. It supplements the boxplot for verifying data 

normalization before differential expression analysis.  

The limma (qqt) plot compares the dataset's quantiles 
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with the theoretical quantiles of the t-test distribution. 

This graph helps evaluate the quality of the limma test 

outcomes. 

The moderated t statistic has proven highly beneficial in 

microarray research. The statistic was expressed as d/(s 

+ s0), where d is the difference in means between two 

groups, s represents the estimate's pooled standard devi-

ation, and s0 is a tiny constant. Test results are often 

discrete, with thousands of genes near to background 

levels and integer densities less than plus or minus 30.  

When the statistical analysis was complete, the applica-

tion displays the results of a comparison of 250 genes 

with the lowest possible p values, grouped in ascending 

order. The final statistics table includes the following 

data: 

The p-value after accounting for numerous tests (col-

umn with adj. p. in Table 1) numbers included the fun-

damental statistics from which the findings may be 

evaluated. Genes with lower adjusted p-values will be 

the most dependable and tightly connected. Results with 

adjusted p-values <0.05 were picked, which is similar to 

setting the false discovery rate (FDR) to 0.05 and allow-

ing 5% of discovered genes to be false positive. GEO2R 

analysis shows 250 genes with the lowest p-values. 

The original p-value before multiple testing adjustment 

established the findings' deviance plus or minus the 

standardmean. The shrunken t-test was used for compar-

ison of particular groups. The B statistics represents log 

probabilities that the gene will be expressed differently 

than other genes. 

The logarithm was employed in base 2 because it is 

simple to understand. Doubling the initial scale is 

equivalent to altering the log2 times by one. Doubling it 

four times is equivalent to increasing the log2 times by 

two. As a consequence, the scale is doubled according to 

the change in expression. 

An evaluation of gene expression data was made examin-

ing gene set enrichment within the cluster using differen-

tial functional annotation. Depending on whether the 

differentially expressed genes were associated with a 

specific biological activity or have molecular roles within 

the cell, the data were shown as curves or an Iimma plot. 

The findings were presented in the form of a table that 

provides a ranking of 20 genes with the lowest p-values. 

RESULTS 

Following the completion of an expression screen for 

each gene, a total of 10 genes were chosen because of the 

differences in gene expression that were identified be-

tween them (Table 1), as well as the difference in gene 

expression between the two patient groups (Figure 1). 

By plotting statistical significance (the adjusted p value 

and the spot identifier), a volcano diagram showed dif-

ferentially expressed 10 genes in 12 samples (-log10 p 

value) vs magnitude of change (log2 fold change) (Sup-

plemental Digital Content 1). 

Figure 2A depicts a normal expression as the black dot 

genes of 27578 of the total probs. The variation in gene 

expression was not substantially different across the 

patient groups (Figure 2B). 

The outcomes of the study demonstrated that no genes 

were linked to each other among the patient groups 

(Figure 2C).  

Patients' values clustered around the median suggest that 

the data are standardized and mutually comparable and 

that the value distributions across the various samples 

are consistent. Figure 2D shows the results of applying a 

log transformation and a normalization to the data. 

There was no difference in the distribution of density 

curves between the groups (Figure 2).  

Figure 3A illustrates the data after log transformation and 

normalization have been completed. After the comparison 

of the dataset's quintiles with the theoretical quintiles of 

the t-test distribution, the ideal alignment of the dots along 

a straight line indicated that the values for the moderat-

ed t-statistic generated from the test corresponded to 

their theoretically predicted distribution (Figure 3B).  

StringUtils (STRING) tool was used to detect the protein-

protein interaction. Analyses of protein-protein interac-

tions found that only two out of 10 genes had a binding 

association (SYT12 and NFKB1). These two genes have 

down-regulation in DT2 (Figure 4). 

Individuals diagnosed with DT2 have their genes experi-

mented on pancreatic adenocarcinoma (PAAD). Several 

genes were examined, and it was shown that their expres-

sion was different in DT2 patients compared to controls. 

The relative expression levels of each gene across the 

primary tumour were extracted according to The Cancer 

Genome Atlas (TCGA) analysis data. Analysing the find-

ings reveals a difference in the expression of chosen 

genes between normal persons and people with PAAD in 

their four grades. PLD6 and PDCD5 expression levels 

were similar in early grades of the illness, although the 

fourth grade of PAAD was expressed at a higher rate. 

SYT12, KCNMB2, HTRA3, and DYRK2 were all similarly 

expressed in early grades, but their expression declined 

by the fourth grade. In contrast, gene expression of 

SYT12, PLD6, and NFKB1 declined below that of normal 

persons in the first three grades. SLC16A4, KCNMB2, and 

HTRA3 gene expression was essentially negligible during 

the fourth grade of infection (data are not shown). The 

proteins of interest, PLD6, PDCD5, and CHRAC1 were 

all found to be expressed in DT2 in our study. 
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DISCUSSION 

The development of genome-wide association studies, 

which look for single nucleotide polymorphisms (SNPs) 

that are more prevalent in individuals with a given con-

dition, has added an intriguing new angle to DT2 genet-

ics research (21,22). While several investigations on 

possible genes and linkages had been done before the 

early 2000s, only a few susceptibility loci had been 

pinpointed (21). More than 60 SNPs were associated 

with DT2 by 2016 (22). Gene-wide association studies 

(GWAS) have looked at how changes in genes like 

ABCC8 and KCNJ11 affect the earliest oral drug sul-

fonylureas, and genes like SLC12A1 and AQP2 affect 

thiazolidinediones (TZDs) (23). All of these things help 

doctors decide for their patients what doses of medica-

tion to use for DT2 prevention, treatment, and manage-

ment. Other SNPs and genes related to insulin signal-

ling, including KCNJ11 and PPARG, as well as those 

implicated in drug metabolism, including CYP2C9, 

have been discovered by researchers (24,25). 

Recent research has revealed that a number of epigenet-

ic mechanisms and variables increase the risk of devel-

oping DT2 due to their essential function in numerous 

cellular processes. Although the GLP1 receptor and 

paired box 4 (PAX4) are two of the main genes that are 

linked to ꞵ-cell development and functioning, epigenetic 

methods also affect gene networks that are implicated in 

insulin resistance and insufficiency (26,27). 

When studying the effects of new environmental expo-

sures, it would be very helpful to include parents of both 

people with and without diabetes in future studies. Last 

but not least, a better understanding of the genetic struc-

ture of DT2 at the molecular level will help classify the 

different types of diabetes into subtypes. This will lead 

to a more precise medical treatment based on the under-

lying pathophysiology (28,29). Among the genes with 

different levels of expression, one stands out. This gene 

is linked to several complications of DT2. Information 

that came out of this work's integrative approach could 

be used to improve other kinds of therapy. The fact that 

DT2 patients and normal people have different expres-

sions of genes linked to DT2 and its complications 

shows that the conditions for these complications to 

happen are already present in DT2. These observations 

show that there is already a change in the way protective 

genes are expressed in DT2 conditions. Obesity is by far 

the most important risk factor that interacts with genes 

to cause complications from DT2, followed to varying 

degrees by inflammation, diet, and stress (30,31).   

Better prediction capacity is anticipated as a result of 

increased data availability and refined statistical ap-

proaches for evaluating interactions between genes and 

the environment. Researchers are gaining vital new 

insights into the pathophysiology of DT2 as it becomes 

clear that these genes play a crucial role in glucose con-

trol. It is hoped that they will lead to more effective 

means of diagnosis and treatment in the future (32,33). 

Future applications may include, but are not limited to, 

more accurate risk assessment, the identification of 

novel pharmaceutical targets, and the development of 

more narrowly targeted therapeutics. One example is the 

use of gene therapy or epigenetic reprogramming to 

change diabetes susceptibility (34,35). 

A survey of the expression of about 1900 genes in type 

2 diabetes patients was done for the present study. Only 

10 genes with varying expression differences between 

low and high were chosen. The examined genes PLD6, 

PDCD5, and CHRAC1 were found to have a greater 

expression in patients compared to controls. We found 

no significant differences in the expression of any gene 

across any of the study samples because every one of 

them fell within the permitted limit. Using a density plot 

analysis based on the t-test distribution supported the 

degree of expressive sequences. 

Table 1. Ten selected genes with different expression and their positions 

D ad. p   p t B logFC RANGE_STRAND GB_ACC ORF 
Gene 

symbol 

cg02880176 1 0.0036902 -3.22 -3.355 -0.06841 - NM_178836.2 201164 PLD6 

cg12724357 1 0.004158 3.17 -3.47 0.03241 + NM_177963.2 91683 SYT12 

cg12002314 1 0.0047481 -3.12 -3.598 -0.00902 + NM_017444.3 54108 CHRAC1 

cg06310844 1 0.0102633 -2.79 -4.333 -0.02533 + NM_004708.2 9141 PDCD5 

cg08812936 1 0.0104801 2.78 -4.352 0.06312 
 

NM_005832.3 10242 KCNMB2 

cg01137708 1 0.0155268 2.61 -4.722 0.006 + NM_003998.2 4790 NFKB1 

cg24105933 1 0.0158808 -2.6 -4.743 -0.00819 + NM_053044.2 94031 HTRA3 

cg09494546 1 0.0144363 -2.64 -4.654 -0.02018 
 

NM_004696.1 9122 SLC16A4 

cg22621695 1 0.0003305 -4.2 -0.991 -0.03026 + NM_003583.2 8445 DYRK2 

cg21522988 1 0.0077983 2.91 -4.072 0.02299 
 

NM_018099.3 55711 FART2 

D, identification profile number; adj. p, p-value after correction for multiple testing; t, t-statistic of the shrunken t-test; B, B-statistic or log-odds 

that the gene differentially expressed; logF C, log2-fold change between the two experimental conditions; RANGE_STRAND, gene sequence 

forward + or -; GB_ACC, the gene identification number in GenBank; ORF, open reading frame 
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SYT12 and NAFKB1 were found to be closely linked 

through protein-protein interaction only in the targeted 

loci. Heat map analysis of gene expression revealed that 

PDCD5 and HTRA3 both show elevated expression that 

is significantly higher than the border close to the genes 

as an indicator of the tumour phenotype. 

The number of primary pancreatic adenocarcinoma pa-

tients was greater than that of healthy controls for 

SLC16A4, DERK2, and CHRAC1. Concerning the severi

 

ty of cancer, all selected genes revealed a greater propor-

tion of affected individuals compared to the healthy con-

trol group. The number of patients with grade 4 pancreat-

ic adenocarcinoma was significantly higher than the 

number of patients with other grades for the genes PLD6, 

PDCD5, and CHRAC1. 

When monitoring the expression of the three genes 

under study in various types of cancer, the following 

expression levels were observed: PLD6 expression was  

 

Figure 1. Expression levels of the 10 investigated profile genes vary considerably between the control and patients with 

diabetes mellitus type 2 (DT2) 
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found to be elevated in patients with thyroid, carcinoid, 

pancreatic, and prostate malignancies. PDCD5 was found 

to be elevated in pancreatic cancer and head and neck 

cancer patients. CHRAC1 increased considerably in pa-

tients with leukaemia and lymphoma, more so than in 

patients with other tumours. High expression of PLD6, 

PDCD5 and CHRAC1 is not only deemed a marker for 

cancer patients but also for patients with type 2 diabetes, 

according to the findings of the current study. To fully 

understand how epigenetics play a part in DT2 and other 

chronic diseases, more human studies are required. This 

is because the observed and determined heritability may 

be caused by several epigenetic mechanisms and factors, 

such as intrauterine life as seen in animal studies, rather 

than inherited variations in DNA sequence. There are 

multiple genes whose increased expression is linked to 

type 2 diabetes. PLD6, PDCD5 and CHRAC1 are regard-

ed to be DT2 markers. These genes are highly expressed 

in the largest proportion of grade 4 pancreatic cancer 

patients compared to other cancer grades. 

 

Figure 2. A) Volcano plot of gene frequency, where black dots represent normal gene expression; B) the UMAP plot de-

picts the distribution of samples according to their respective colors; C) the Limma plot for the groups of patients indi-

cates no correlations between groups with p adj. <0.05; D) the box plot of the patient's profile is standardized and inter-

changeable 

 

Figure 3. A) Density plot: sample distribution separated into two groups based on color; B) limma (qqt): the layout of the 

dataset per the theoretical quantiles of the t-test distribution 
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